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Confocal microscopy is an essential imaging tool for biological systems, solid-state physics and
nanophotonics. Using confocal microscopes allows performing resonant fluorescence experiments, where
the emitted light has the same wavelength as the excitation laser. These challenging experiments are carried
out under linear cross-polarization conditions, rejecting laser light from the detector. In this work, we
uncover the physical mechanisms that are at the origin of the yet-unexplained high polarization rejection
ratio which makes these measurements possible. We show in both experiment and theory that the use of a
reflecting surface (i.e., the beam splitter and mirrors) placed between the polarizer and analyzer in
combination with a confocal arrangement explains the giant cross-polarization extinction ratio of 108 and
beyond. We map the modal transformation of the polarized optical Gaussian beam. We find an intensity
“hole” in the reflected beam under cross-polarization conditions. We interpret this hole as a manifestation
of the Imbert-Fedorov effect, which deviates the beam depending on its polarization helicity. This result
implies that this topological effect is amplified here from the usually observed nanometer to the micrometer
scale due to our cross-polarization dark-field methods. We confirm these experimental findings for a large
variety of commercially available mirrors and polarization components, allowing their practical
implementation in many experiments.
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I. INTRODUCTION

In optical spectroscopy experiments, it is crucial to excite
an emitter with a laser very close to its transition energy.
Experiments under resonant excitation are essential for
accessing the intrinsic optical and spin-polarization proper-
ties of a large class of emitters [1–5]. Resonance fluores-
cence is not limited to quantum dots [6], which are known as
robust, fast, bright, and narrow-linewidth emitters of single
photons [7,8]. It is also used to study novel solid-state
material systems with longer coherence times suitable for
quantum information storage, computation, and sensing at a
single-photon level [9–11] such as transition metal dichal-
cogenide monolayers [12], rare earth elements [13], single
nitrogen vacancy [10], tin vacancy [14], silicon [15], and
germanium vacancy in diamond [16]. Using linear cross-
polarization in a confocal setup has been successfully
employed as a dark-field method to carry out resonant
fluorescence experiments to suppress scattered laser light,
with the added benefit of high spatial resolution [17,18].

Resonant fluorescence experiments allow crucial insights
into light-matter coupling, such as the interaction of a single-
photon emitter with its environment [19], with optical
cavities [20], and also studying single defects in atomically
thin materials such as WSe2 [12]. Dark-field confocal
techniques allow developing single-photon sources with
high degrees of photon indistinguishability [21–23] and
longer coherence [24]. In practice, dark-field laser suppres-
sion is not just a spectroscopy tool; it is also a key part of
more matured quantum technology systems [25].
Resonant excitation is absolutely necessary for manipu-

lating quantum states or for any operation that relies on phase
coherence. A striking example is the realization and verifi-
cation of quantum entanglement between an NV electron
spin qubit and a telecom-band photonic qubit [26]. Here,
readout via a phonon sideband is impossible, as phonon
emission implies that the target states are no longer
entangled. The dark-field approach is adopted for enabling
practicable quantum networks using quantum dots [20,27]
and diamond defects [9,11,28] embedded in optical cavities.
Despite many advances based on experiments in confocal

microscopes with cross-polarization laser rejection, the
physical mechanisms that make these experiments possible
are not well understood, hampering further progress in this
field. The key figure of merit is the suppression of
the excitation laser background by at least 6 orders of
magnitude. Pioneering work by Wilson et al. shows that
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cross-polarization extinction of a confocal microscope is
much higher than of a classical microscope and that it could
reach, but never exceed, the polarizer intrinsic extinction
limitation, which in their case is 104 [29] to 105 [30]. This
result is very different from our findings, in which we
demonstrate how to go beyond the intrinsic polarizer
extinction limit by 3–4 orders of magnitude. Indeed, a
suppression by a factor of 108 [31] up to 1010 (this work)
have beenmeasured. But this result is very surprising, as not
only real polarizer extinction limitation but also the lenses,
mirrors, and beam splitter in such a system reduce the
theoretical extinction limit to the 103–104 range.
In this work, we explain the physics behind the giant

enhancement of the extinction ratio by up to 7 orders of
magnitude that make microscopy based on dark-field laser
suppression possible. The measurements of resonant fluo-
rescence are typically performed in an epifluorescence
geometry [31], for which laser excitation and fluorescence
collection are obtained through the same focusing lens.
This measurement involves necessarily the use of a beam
splitter orienting the backreflected light containing the
fluorescence toward a detection channel. In our work,
we identify two key ingredients that explain the giant
amplification of the cross-polarization extinction ratio: (i) a
reflecting surface (i.e., the beam splitter) placed between a
polarizer and analyzer and (ii) a confocal arrangement. We
demonstrate giant extinction ratios in our experiments for
different mirrors (silver, gold, dielectric, and beam-splitter
cubes) and polarizers (Glan-Taylor and nanoparticle thin
films). We demonstrate that behind this general observation
lies the intriguing physics of the Imbert-Fedorov effect
[32,33], which deviates a reflected light beam depending on
its polarization helicity. We discover that a confocal
arrangement amplifies the visibility of the Imbert-
Fedorov effect dramatically, taking it from the nanometer
to the micrometer scale. As a result of this micrometer shift,
the cross-polarized laser beam is not coupled into the
detection fiber, explaining the near-complete suppression
of the laser background signal. In other words, we cannot
treat the spatial and polarization properties of light sepa-
rately in our dark-field confocal microscope analysis. In
addition to new developments in dark-field microscopy, our
experiments provide powerful tools for research in topo-
logical photonics [34–36], in the broader context of what is
termed the spin-Hall effect of light [36].
In our work, we setup a robust, reproducible experiment

and derive a formalism to investigate these remarkable
effects at the crossroads of quantum optics and topological
photonics.
The paper is structured as follows. In Sec. II, we

introduce the experimental setup. Cancellation of polari-
zation leakage is measured and discussed in a first
simplified model in Sec. III. The modal transformation
of a reflected Gaussian beam is analyzed in Sec. IV. The
effect of confocal filtering is discussed in Sec. V.

II. CONFOCAL MICROSCOPE SETUP

We use a simplified confocal arrangement as depicted in
Figs. 1(a) and 1(b) in order to focus on the most relevant
physics leading to extreme laser rejection. A diode laser
beam (1) at λ ¼ 905 nm wavelength is launched into a
single-mode fiber (2). The light emerges from the 4° angled
flat-polished end with a nearly perfect Gaussian beam with
ω0 ¼ 2.5 μm mode waist radius at 1=e2 of the maximum
intensity. A diffraction-limited microscope objective (3) of
numerical aperture NA ¼ 0.25 and focal length of f ¼
26 mm focused on the fiber end collimates the light into a
3-mm-waist-radius Gaussian beam. We choose the NA to
be significantly larger than the diverging beam half-angle
out of the fiber in order to preserve the Gaussian quality of
the beam.
A pair of mirrors (4 and 5) mounted on two axis tilt

stages allows for fine steering of the collimated beam axis.
Next, the beam travels to a linear polarizer (6) mounted on a
piezoelectric stepping stage rotating with 20 μrad resolu-
tion around the optical axis. The best-quality commercial
linear polarizers we use for this experiment show an
extinction in direct cross-polarization limited to 105 for a
nanoparticle thin film polarizer and to 106 for Glan-
Thomson crystal polarizers. The beam travels then toward
a mirror (8), the key element of this experiment, either by
passing first through an analyzing polarizer [Fig. 1(a)] for
the control measurement or by passing through the analyzer
after a reflecting surface for the test experiment [Fig. 1(b)].
We mount the analyzer also on a piezo stepper fine rotation
stage. The mirror (9) mounted on the two-axis piezo
controlled tilt stage steers the beam into a microscope
objective (10) identical to (3) focusing the light into the
core of a single-mode fiber (11) identical to (2) allowing
for Gaussian TEM00 modal confocal filtering and optical
detection [(12)-Si-photodiode] at the other end of the
5-m fiber cable. This confocal arrangement simulates the
essential components of the resonant fluorescence confocal
microscopes. The reflecting surface plane (8) at 45° of
incidence defines the standard p and s states of polarization
with projections along e⃗x and e⃗y, respectively. The reflect-
ing test surfaces in position (8) in Figs. 1(a) and 1(b) we use
in this work are commercial protected silver, aluminum,
and dielectric high-reflectivity Bragg mirrors and evapo-
rated gold film, as well as nonpolarizing beam-splitter
cubes. All such reflecting surfaces are typically used in
diffraction-limited confocal microscopes. The results are
qualitatively very similar for all these reflecting surfaces.
We choose to show here the data measured with silver
mirrors only, with the exception of data measured for
comparison on a glass surface reflecting from air as
discussed at the end of this publication.
We now discuss the measurements in the configuration

shown in Fig. 1(b), for which the reflecting test surface is
sandwiched between the polarizer and the analyzer. First,
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the polarizer angle β is adjusted near 0 or π=2, for p or s
polarization, respectively, while setting the analyzer angle α
near cross-polarization at β � π=2. Then, the polarizer and
analyzer are subsequently finely rotated to reach maximum
extinction at values β and α, respectively. Once the
optimization is reached, β remains untouched and the
analyzer in its rotator is subsequently placed before
the reflecting surface just after the polarizer for our control
extinction measurement [Fig. 1(a)]. The analyzer angle
must then be adjusted to a new value α0 in order to recover
maximum nominal extinction specification inherent to the
polarizers; α0 defines then the p or s reference. The
extinction data measured as a function of the analyzer
angle α in reference to α0 are shown in Fig. 1(c) for the
control measurement [Fig. 1(a)] as well as for the p and s
polarizations in the configuration [Fig. 1(b)]. Two striking
observations stand out. (i) For all the tested reflectors
indicated above, the extinction ratio obtained this way is
enhanced beyond the 108 range when the test mirror surface
is sandwiched between the polarizer and the analyzer,
reducing this way significantly the polarization leakage
of the polarizers. (ii) The analyzer angle for maximum
extinction is shifted away from α0 by þ0.898° and −0.977°
for the p and s polarization, respectively, a significant
angular deviation given our resolution of about 10−3 deg.
In the next section, we provide a first explanation for these
two striking observations.

III. CANCELLATION OF
POLARIZATION LEAKAGE

Intuitively, the significant reduction of the polarization
leakage field must find its root in a destructive interference
effect. The first challenge toward finding an answer to our
problem is to offer a model of the polarization leakage. In
order to determine the light field at various planes such as
after the polarizers and mirrors, we define a right-hand
coordinate system p⃗, s⃗ transverse to the optical beam
propagation axis p⃗ × s⃗ according to the definition of p and
s polarization with respect to the plane of incidence with
the test surface (8) in Fig. 1(b). For clarity, s⃗≡ e⃗y is
perpendicular to the incidence plane. In this section, we test
first the simplistic idea that the collimated laser beam can
be approximated by a plane wave. We use a Jones matrices
formalism projecting the field components along p⃗, s⃗ after
each relevant optical element, namely, the matrix ¯̄PðβÞ of
the polarizer, ¯̄M of the reflecting test surface, and ¯̄AðαÞ that
of the analyzer. In this formalism, an ideal linear polarizer
along p⃗ and s⃗ is represented by

¯̄Pp0
¼

�
1 0

0 0

�
; ¯̄Ps0 ¼

�
0 0

0 1

�
: ð1Þ

We assume now that a real physical linear polarizer
along p⃗ or s⃗ represented by ¯̄Pp ¼ ¯̄L ¯̄Pp0

and ¯̄Ps ¼ ¯̄L ¯̄Ps0 ,

FIG. 1. (a),(b) Cross-polarization extinction setup in a confocal microscope arrangement setup as described in the text. (c) Measured
and modeled linear polarization extinction ratio for both p- and s-polarized beams around cross-polarization conditions obtained by
placing the analyzer before (a) and after (b) a protected silver mirror. A giant extinction enhancement of more than 3 orders of magnitude
is obtained in configurations s and p with the reflecting surface placed between crossed polarizers. The inset is a magnification of the
polarization extinction near maximum for the s polarization. An angular shift of the location of maxima of extinction is systematically
found for the s and p polarization with respect to the reference. When the linear polarization is tilted at�45° from the plane of incidence,
the extinction reduces dramatically down to about 41 as shown with the lowest curve and data point.
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respectively, and is characterized by a polarizer leakage
Jones matrix ¯̄L. The assumption we are making about the
physical origin of the leakage is that it is due to lossless
coherent scattering such as Rayleigh scattering inclusions
in the crystal. This assumption, which we verify exper-
imentally, is that the leakage should be invariant upon an
arbitrary angular rotation φ around the optical axis p⃗ × s⃗,
namely, ¯̄L ¼ ¯̄RðφÞ ¯̄L ¯̄Rð−φÞ, where the rotation matrix
¯̄RðφÞ is given by

¯̄RðφÞ ¼
�
cosφ − sinφ

sinφ cosφ

�
: ð2Þ

We choose to represent the polarization leakage by a matrix
generating a residual elliptical polarization:

¯̄L ¼
�
a −ib
ib a

�
; ð3Þ

where a2 þ b2 ¼ 1. Such a form is invariant upon rotation.
For a high-quality commercially available linear polarizer,
a2 ≫ b2, which is the case in our setup, since from our
experiment we determine a2=b2 ≅ ð1.5� 0.5Þ × 105. This
result is the measured nominal leakage seen in Fig. 1(c). We
note that the formalism can also be extended to circular
polarizers, in which case a2 ≅ b2 and the leakage stems
from the slight difference between the two terms.
We assume an incoming laser field E⃗p initially p

polarized that we rotate at an angle β, aligning it with
the polarizer such E⃗ðβÞ ¼ ¯̄RðβÞE⃗p. This field first traverses

the leaky polarizer also rotated at β such that ¯̄PðβÞ ¼
¯̄RðβÞ ¯̄L ¯̄Pp0

¯̄Rð−βÞ followed by the mirror matrix ¯̄M and
by the analyzer matrix rotated at an angle α, namely,
¯̄AðαÞ ¼ ¯̄RðαÞ ¯̄L ¯̄Ap0

¯̄Rð−αÞ, so the field E⃗ just after the
analyzer is written

E⃗ ¼ ¯̄AðαÞ ¯̄M ¯̄PðβÞ ¯̄RðβÞE⃗p: ð4Þ

The mirror Jones matrix for a plane wave is written

¯̄M ¼
�
rp 0

0 rs

�
; ð5Þ

where rp;s are the complex-valued Fresnel reflectivity coef-

ficients rp¼ðϵ̃cosθi−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ̃−sin2θi

p
Þ=ðϵ̃cosθiþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ̃−sin2θi

p
Þ

and rs ¼ ðcos θi −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ̃ − sin2 θi

p
Þ=ðcos θi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ̃ − sin2 θi

p
Þ

[37], where the test surface material enters through its
complex-valued effective dielectric function ϵ̃ ¼ n2=ϵback
or, equivalently, its optical constant n2 ¼ ϵ1 þ iϵ2, which
is tabulated for noble mirror metals [38]. Here, ϵback is the
dielectric function of the medium covering the mirror. Silver
andaluminummirrors are often coveredwith about 100nmof

SiO2 protective layer. After a lengthy but straightforward
calculation, we determine the light intensity just after the
analyzer:

I ¼ a2jrp cosα cos β þ rs sinα sin βj2
þ b2jrp cos α sin β − rs sin α cos βj2
þ 2abImðrpr�sÞ cosα sinα: ð6Þ

The polarization extinction ratio is then simply given by 1=I.
A practical check for pðsÞ polarized light, namely, for
β ¼ 0ðπ=2Þ and the corresponding cross-polarization
α ¼ π=2ð0Þ leads to the expected finite polarization leakage
I ¼ b2jrp=sj2. For a hypothetical perfect mirror, rp ¼ 1 and
rs ¼ −1, making it in this idealized case I ¼ b2. Because the
reflecting surface has real and imaginary components for rs
and rp, Eq. (6) shows that for a ”sufficiently small value”ofb2

we can always find a unique choice of angles α and β that
leads to I ¼ 0, canceling thisway the undesired leakage. This
result is always true under condition of total internal
reflection, which is the case of a metallic mirror in the visible
and infrared range and for a typical cube beam splitter.
A sufficiently small value of depolarization to obtain perfect
cancellation means in the context of our work typically
b2 < 6 × 10−3when using a silvermirror aswe derive later in
the text. The reflecting test surface in combination with the
polarizer rotation acts to interfere destructively with the
residual rotation-invariant lossless polarization leakage inher-
ent to even the best commercial linear polarizers. Conversely,
for a purely dielectric surface such as glass (i.e., BK7)
reflecting from the air side, for which rp and rs are both
real, no full polarization leakage cancellation is possible. For
comparison, we also test our model with a purely dielectric
BK7 glass surface with reflectivity from the air side near
cross-polarization for the p polarization. The results are
shown in Fig. 5(c). In this configuration, as expected from the
model, indeed there is no shift α − α0 between the condition
of maximum cross-polarization for the dielectric and the
reference measurement. As expected, there is no effect of
cancellation of the polarization leakage. Here, the improved
polarization from 105 to 106 seems to come only from the
fact that in p polarization at 45° the glass surface has a
polarizing effect.
To get a better feel for the relevant parameters at work

in cancelling almost perfectly the polarization leakage, we
use the convenient complex form rp ¼ ρp expðiφpÞ and
rs ¼ ρs expðiφsÞ. Consider high-reflectivity mirrors for
which ρp ≈ ρs ≈ 1. Solving Eq. (4) for field cancellation
leads to the first order in jbj ≪ 1 to a set of two equations
cosðα − βÞ ¼ −ðb=aÞ tanΔ sinðαþ βÞ and cosðαþ βÞ ¼
−ðb=aÞ cotΔ sinðα − βÞ, where Δ ¼ ðφp − φsÞ=2. This
way, both α and β can be analytically calculated. In the
particular case of dielectrics reflecting from the air side for
which Δ ¼ π=2, we see already that there are no solutions.
Instead, we need the condition Δ ≠ π=2, which is always
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verified in condition of total internal reflection. For
pure silver at λ ¼ 905 nm, φp − φs ¼ 192.52°, implying
tanΔ ¼ −9.12, which, in turn, shows that for this particular
case a solution I ¼ 0 exists for polarizers with leakage
levels b2 < 0.012. One more step is required to make use of
these equations toward interpreting our results, because we
do not find any easy way to measure independently an
absolute value α and β to the precision required for our
measurements. As explained in the previous section, the
value we can measure experimentally with the required
accuracy is only the shift α − α0. In the reference meas-
urement with the analyzer placed directly after the polar-
izer, we assume that the cross-polarization condition
α0 − β ¼ π=2 holds. For the test experiment, the equation
cosðα − βÞ ¼ −b tanΔ is developed in the limit of small
leakage jbtanΔj≪1, so that we get α − β ¼ π=2� b tanΔ
for the near p and s conditions, respectively. This result
shows that the correction to the analyzer is simply
α − α0 ¼ �b tanΔ, corresponding to α − α0 ¼ þ0.898°
with a measured leakage 1=b2 ¼ 8.3 × 104 and −0.977°
with 1=b2 ¼ 9.6 × 104 for the p and s state, respectively, in
the case of the measurement in Fig. 1(b), for a protected
silver mirror. Given the measured leakage limiting the
nominal extinction at 1=b2 ¼ ð1.5� 0.5Þ × 105, we deter-
mine b ¼ −ð2.7� 0.5Þ × 10−3, which, in turn, allows
determining Δ ¼ 99.7°� 1.7°, a value to be compared to
the value for pure silver of Δ ¼ 96.27° [38]. We perform an
independent measurement of Δ and find Δ ¼ 98.3°, which
is consistent with our present measurement. Such a value
indicates that for our mirror the measured effective
ϵ1 ¼ −23 instead of −41 for pure silver. This important
difference is due to the protective SiO2 layer of about 100 nm
deposited on the silver mirror we use. This simple novel
method shows that we can conveniently measure the phase
shift φp − φs between p and s polarization after reflection
for metals. For a metallic mirror, the phase tanΔ is, in fact,
related to the angle of incidence θi, the negative real part of
themetal dielectric function ϵ1, and the dielectric function of
the protective layer ϵback through the following equation:
tanΔ ≅ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ1=ϵback þ sin2 θi

p
=ðsin θi tan θiÞ.

Our measurements performed using a high-reflectivity
Bragg mirror show larger shifts α − α0 ¼∓ 2.2° leading
to a phase shift φp − φs ¼ 189.2° between the p- and
s-reflected components.
The full measurements shown in Fig. 1(c) are fitted using

Eq. (6), accounting convincingly for the cross-polarization
extinction amplification and the slight polarizer and
analyzer rotation shift required to reach it. In the limit
ρs ≈ ρp, we calculate that the polarization leakage should
be sufficiently small to allow perfect extinction when
the condition b2 < 1=(1þ tan2ðΔÞ) is verified. For our
experimental case, this condition corresponds to b2 <
2.1 × 10−2 and for a pure silver to b2 < 1.19 × 10−2.
Such values are, in fact, relatively large and, thus, allow

realistically achieving polarization leakage cancellation for
most standard commercial polarizers.
A last practical aspect to address is the wavelength

dependency of this effect. For a highly reflecting mirror,
the wavelength dependency is to be found in the phase
difference ΔðλÞ. As a result, the correction to the analyzer
angle αðλÞ − α0 ¼ �b tanΔðλÞ calculated for reaching
maximum extinction is also a function of the wavelength.
Hence, we see that the polarizer angle α of maximum
extinction shifts as a function of wavelength as ∂α=∂λ ¼
�bð∂Δ=∂λÞ= cos2 Δ, which can easily be evaluated using
the formulas of the Fresnel coefficient and the correspond-
ing dielectric constant of the mirror-relevant material. For a
perfect silver mirror and a polarization leakage of 105, we
evaluate a chromaticity rate of ∂α=∂λ ¼ 0.0019°=nm for a
wavelength around λ ¼ 905 nm. In this particular example,
keeping the analyzer angle at a value of maximum
extinction for 905 nm, the wavelength could be shifted
by up to �10 nm and still keep the extinction up to a
level > 107.
At this point, we could conclude the paper here, as we

are able to explain convincingly all the features of the
enhanced polarization extinction. Our analysis, however,
misses so far a crucial point, namely, the experimental fact
that the leakage cancellation was measurable only in a
confocal arrangement, a point that is elucidated in the next
sections. More specifically, the analysis we conduct leading
to the main result in Eq. (6) so far is done purely for a plane
wave for which the Jones matrix formalism is valid. In
reality, however, the finite size of the collimated Gaussian
laser beam imposes a finite angular wave distribution
around the angle of incidence on the mirror [39]. The
Fresnel coefficient rp and rs becomes then a function of the
angular distribution [39]. This function, as we see, leads to
significant geometrical depolarization effects in the form of
new optical modes limiting the total extinction to the 104

range. We see that a confocal arrangement filters away the
depolarization modes and that the result of this section
turns out to be fortuitously usable.

IV. MODAL TRANSFORMATION OF A
REFLECTED POLARIZED GAUSSIAN BEAM

To find the origin of the unexpectedly high polarization
rejection ratio >108, we map the detected intensity by
scanning the spatial position of the collecting fiber in the
focal plane of the focusing objective.
In the absence of a reflecting surface between the

analyzer and polarizer in cross-polarization, namely, the
reference configuration in Fig. 1(a), the measurements
in Figs. 2(a) and 2(b) (upper row) show a pure TEM00

Gaussian mode field attenuated by 8.3 × 104 and
9.6 × 104 for a p- and s-polarized beam, respectively.
This level is expected for the polarizer leakage specifica-
tions. In contrast, when we place the analyzer after the
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reflecting test surface, the measurements show that the
mode splits into two lobes distributed along e⃗y and located
above and below the reflectivity plane. In this cross-
polarized configuration, we find an intensity “hole” at
the location of the optical fiber center. There, the intensity
extinction is slightly higher than 108, a factor of 100 away
from our actual setup sensing limit. We occasionally reach
1010 records in which the dark noise of the detector is, in
fact, the limiting factor. We experimentally verify the
stability of this effect over tens of hours for p and s
linearly polarized incident light. We observe qualitatively
the same effects for incidence angles of θi at 9°, 22°, 25°,
30°, and 68°. We observe qualitatively the same behavior
for different type of polarizers such as a crystal polarizer
(Glan-Taylor) and nanoparticle thin film linear polarizers,
for different mirrors such as silver, gold, aluminum,
dielectric Bragg reflectors, and nonpolarizing beam-splitter
cubes, attesting to the robustness of this effect.
To get a feel for the measured modal transformation

for p and s, we measure and show in Figs. 3 and 4 the
evolution of the confocal light intensity maps for different
analyzer rotation angles variation δα around the symmet-
rically split mode. Figures 3(d) and 4(d) show quantita-
tively for p and s polarizations the measured positions of
beam-peak shifts along e⃗y and splitting above and below
the plane of incidence as a function of δα. We observe
a very similar behavior for beam-splitter cubes typically
used in the resonant fluorescence setup such as in
Refs. [17,18,24,31], with the difference, however, that
the equivalent figure looks instead mirrored with respect
to the axis Δy ¼ 0. In all cases, such split-lobe intensity

distribution is very reminiscent of a TEM01 Hermit-
Gaussian mode.
We reach a record level of 1010 for which the limiting

factor is the dark noise of our detector. The challenge in
such an experiment is to have a polarization rotator that
enables stepping with small enough rotation angles. At this
point, we need to find out why (i) the confocal arrangement
enables the dramatic extinction enhancement as seen in
Fig. 1(c) and (ii) why the beam shifts and splits at cross-

FIG. 2. Confocal mapping of s (a) and p (b) laser beams in co- and cross-polarization using a scanning mirror (9). The upper and lower
rows of the figures are measurements with the analyzer placed before [Fig. 1(a)] and after [Fig. 1(b)] the test reflecting surface,
respectively, in s polarization and p polarization [(a) and (b), respectively]. We plot the extinction ratio map by dividing, pixel per pixel,
the copolarized with the cross-polarized data. In cross-polarization, a modal splitting along e⃗y above and below the plane of incidence is
observed for both the s and p polarization. The dotted line circle is the 1=e intensity level of the Gaussian distribution resulting from the
confocal convolution between the focused spot and the collecting fiber mode. The location of the maxima of the modal splitting lies
exactly on that circle. The diameter of this circle gives also the nonconvoluted focal spot waist diameter at 1=e2 focused on the collecting
fiber end. The vertical white bar represents 5 μm.

FIG. 3. p-polarized beam reflected off a silver mirror. Mea-
sured (a) and simulated (b) evolution of the modal confocal
imaging mapping through maximum extinction (c) for different
analyzer angles δα as explained in the text. In (d), the positions of
the intensity extrema are shown in units of beam waist
ωf at focus.
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polarization in Fig. 2 (lower row) and always above and
below the plane of incidence.
To answer these questions, we need to first model the

spatial field E⃗fx;y at the focal plane of the focusing lens just
before the collecting single-mode optical fiber and then use
the collecting fiber as the confocal Gaussian filter function
porting the light to the detector. The finite-size beam before
the mirror results from a Gaussian-weighted superposition
of plane waves propagating along an angular distribution
k⃗=k0 ¼ up⃗þ vs⃗þ wk⃗0=k0 very narrowly centered around
k⃗0 the wave vector along the optical axis with k0 ¼ 2π=λ. In
the paraxial approximation, u and v are both ≪1, so they
represent the angular spread of the collimated beam. The

focusing lens transforms each plane-wave component E⃗u;v

of the angular distribution into a field E⃗fx;y in the focal
plane; hence, the beam reaching the focal plane at distance
f results from a coherent superposition of all such focused
components. The spatial distribution of the field at a point
located at spatial coordinates ðp; s; zÞ after the mirror is
given as

E⃗ðp; s; zÞ ¼
ZZþ∞

−∞

E⃗ðkp; ks; kzÞeþikppþikssþikzzdkpdks: ð7Þ

The next step is to obtain the angular distribution E⃗u;v. Such
a problem is modeled for a Gaussian field distribution in
Ref. [40] by Aiello and Woerdman. We derive here a
simplified version conveniently describing the essential
physics needed to model our observations. We begin with
the field just before the polarizer, for which we assume a
linearly polarized Gaussian-field normalized angular dis-

tribution E⃗0u;v:

E⃗0uv ¼
ω2
0

4π
E0 exp−

u2 þ v2

θ20

�
cos β

sin β

�
: ð8Þ

The mode divergence θ0 ¼ 2=ðk0ω0Þ ¼ ω0=l results from
the finite size of the collimated laser beam with beam
radius ω0 ≡ 3 mm, and the Rayleigh range l ¼ k0ω2

0=2 is
31.24 m, a value much larger than the size of our
experimental setup, allowing us to ignore the role of beam
propagation up to the focusing lens. Here, the distance
between the mirror of interest (8) and the focusing objective
is typically 0.3 m. With this convention, a p- (s)- polarized
light is obtained at β ¼ 0ðπ=2Þ. When the beam reflects off
the test surface, each plane-wave component acquires an
angle-dependent Fresnel reflection coefficient rp;uv and
rs;uv that are functions not only of θi but also of u and v
[39]. Consequently, for each plane-wave component,
we choose a coordinate system e⃗p, e⃗s, k⃗=k0 that defines
a local incidence plane for that wave. The longitudinal basis
vector is k⃗=k0, and the transverse ones are e⃗s ¼ k⃗=k0 × e⃗z
and e⃗p ¼ ðk⃗=k0 × e⃗zÞ × ðk⃗=k0Þ in the s and p planes,
respectively. To obtain the reflectivity of the mirror
for each plane wave, we determine first the weights of
p- and s-field components, given by the weighted projec-

tions rp;uvðe⃗p · E⃗0uvÞ and rs;uvðe⃗s · E⃗0uvÞ. We determine
then the resulting reflected field transverse field along
the corresponding reflected basis e⃗s;R ¼ k⃗R=k0 × e⃗z
and e⃗p;R ¼ ðk⃗R=k0 × e⃗zÞ × ðk⃗R=k0Þ such that E⃗uv ¼
rp;uvðe⃗p · E⃗0uvÞe⃗p;R þ rs;uvðe⃗s · E⃗0uvÞe⃗s;R. Here, k⃗R is the
mirrored wave vector after reflection. In the paraxial limit,
for a beam impinging, the Fresnel coefficients are devel-
oped to the first order in u around θi and v around 0, giving
rp;uv ¼ rp þ u∂rp=∂θi and rs;uv ¼ rs þ u∂rs=∂θi. The
first-order derivatives ∂rp=suv=∂v in the s plane vanish
for both rp and rs, leaving just derivatives r0p ¼ ∂rp=∂θi
and r0s ¼ ∂rs=∂θi. We calculate the components of the
incoming and reflected basis vectors e⃗p, e⃗s, k⃗=k0 and e⃗p;R,

e⃗s;R, k⃗R=k0 in the paraxial limit u; v ≪ θi. After a lengthy
but straightforward calculation, we obtain the reflected
field distribution after the mirror for each angle u, v. We
express the result conveniently in terms of matrix notation
E⃗uv ¼ ¯̄Mu;vE⃗0uv, where

¯̄Mu;v ¼
�
rp 0

0 rs

�
þ u

�
r0p 0

0 r0s

�
þ v

rp þ rs
tan θi

�
0 −1
1 0

�
:

ð9Þ

Upon inspection of the expression (9) for symmetries, we
see now that the reflectivity Jones matrix transforms an
impinging perfect Gaussian mode, such as Eq. (8), into the
sum of TEM00, TEM01, and TEM10 Hermit-Gauss modes.
The indices for TEMnm indicate the number of nodes along

FIG. 4. s-polarized beam reflected off a silver mirror. Measured
(a) and simulated (b) evolution of the modal confocal imaging
mapping through maximum extinction (c) for different analyzer
angles δα as explained in the text. In (d), the positions of
the intensity extrema are shown in units of beam waist ωf

at focus.
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the p⃗ and s⃗ direction, respectively. The first term in the
right-hand side is the normal test surface reflectivity we use
in the first part of this paper. The second term is responsible
for generating a TEM10 mode along p⃗ in the plane of
incidence. This term is, in fact, responsible for the Goos-
Hänchen effect [41], as it has its physical origin in the
angular dispersion of the reflectivity terms at θi. Here, the
different plane-wave components acquire slightly different
phases upon reflectivity shifting the beam in the plane of
incidence. Because this matrix is diagonal, we see that for a
perfect p or s polarization the Goos-Hänchen effect does
not contribute to depolarization.The third term, the most
relevant to this work, is responsible for generating an out-
of-plane-of-incidence TEM01 mode with two lobes along
e⃗y. This term is the physics responsible for the Imbert-
Fedorov effect [32,33,36,42] known to deviate a reflected
light beam above or below the plane of incidence depend-
ing on its right-handed or left-handed polarization helicity.
The calculation detailed above shows that this term
originates purely from geometrical projections in which
the gradual phase shift gained by each plane-wave com-
ponent upon reflection sums to a cross-diagonal matrix that
mixes the p- and s-phase-shifted reflected plane-wave
components. Consequently, this term is responsible for
an intrinsic reflectivity-induced depolarization for p and s
polarization even when using ideally perfect polarizers.
Because of the purely geometrical projection nature of the
argumentation, compelling connections between the
Imbert-Fedorov effect, Berry’s phase, and spin-Hall effect
of light are discussed in the literature [36,42]. Because of
the direct proportional dependency of this matrix on the
angle v and, in particular, its sign, it creates a TEM10 mode
asymmetric along e⃗y, adding (subtracting) the field to
(from) the symmetric main mode, displacing this way its
weight above or below the plane of incidence depending on
its helicity. This asymmetry can be easily verified using a
circular polarization version of Eq. (8) with the Jones
matrix equation (9). From this simple derivation, it is worth
appreciating that in the paraxial approximation Eq. (9)
expresses both Goos-Hänchen and Imbert-Fedorov effects
in an elegant and compact way. At this point, we can see
from a symmetry argument that our confocal arrangement
enhances cross-polarization extinction.
In the following step, we express the field distribution

transmitted through the polarizer, the mirror, and analyzer
at the back aperture of the focusing lens E⃗uv ¼
¯̄AðαÞ ¯̄Mu;v

¯̄PðβÞE⃗0uv used in the Fourier transform equation
(7). Before providing the general solution, we get first a feel
for the physical parameters governing the Imbert-Fedorov
cross-polarized mode. We consider the special case of
a p- or s-polarized light impinging on the mirror and
subsequently analyzed in cross-polarization configuration.
Here, only the third matrix on the rhs of Eq. (9) is relevant,
and all other terms cancel.

The essential physical parameter that governs the Imbert-
Fedorov mode field intensity is the sum rp þ rs given by
the material reflecting properties. To get a more physical
insight, we use the representation rp ¼ ρp expðiφpÞ and
rs ¼ ρs expðiφsÞ that can be conveniently symmetrized
using ρs ¼ ρþ δρ=2 and ρp ¼ ρ − δρ=2 for the reflectivity
and Δ ¼ ðφp − φsÞ=2 the phase difference. This way, we
obtain

rp þ rs ¼ 2ρ cosΔþ iδρ sinΔ ð10Þ

to within a constant proportional phase term exp iðφp þ
φsÞ=2 identical for all modes of Eq. (9). We now see that
the difference φp − φs governs the intensity and the phase
of the Imbert-Fedorov mode. For instance, in the case of
the air side reflectivity off a perfect dielectric, we have
φp − φs ¼ π, and, hence, rp þ rs ¼ iδρ, so the Imbert-
Fedorov mode field intensity is directly proportional to the
pure differential reflectivity between the p and s waves.
In contrast, for dielectrics under total internal reflectivity
and for metals, we have δρ ≈ 0 and ρ ≈ 1 so that
rp þ rs ¼ 2 cosΔ. In this case, the strength of the depola-
rizing mode is fully governed by the phase difference
φp − φs. We conclude that mapping the Imbert-Fedorov
mode fields in a confocal microscopy setup provides a
direct and sensitive access to the differential reflectivity
amplitude and phases of a reflecting surface. To move
forward with our analysis on the more general case, we
perform the Fourier optics transformation equation (7).
The result is that the field image at the entrance of the
lens for the test experiment with the mirror placed between
the polarizers is E⃗ðp; s; zÞ ¼ ¯̄AðαÞ ¯̄Mp;s;z

¯̄PðβÞE⃗0ðp; s; zÞ,
where the effective reflectivity Jones matrix is given by

¯̄Mp;s;z ¼
�
rp 0

0 rs

�
þ ip
lþ iz

�
r0p 0

0 r0s

�

þ is
lþ iz

rp þ rs
tan θi

�
0 −1
1 0

�
: ð11Þ

The spatial distribution of the field E⃗ðp; s; zÞ results
from the Fourier transform of the unperturbed linearly
polarized laser field angular distribution of Eq. (8) into a
spatial normalized distribution such that

E⃗0ðp; s; zÞ ¼ eik0z exp−
p2 þ s2

ω2
0ð1þ iz=lÞ

�
cos β

sin β

�
: ð12Þ

The resulting reflected field distribution arriving at the
lens turns out to be the one discovered in a different context
in the insightful and pioneering work of Aiello and
Woerdman [43]. In their work, the authors provide, within
a paraxial approximation, a complete analytical solution
for the field distribution of a single-mode Gaussian
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beam reflected off a mirror. The next step is to perform the
lens transformation to obtain the field in the focal
plane x, y [44]:

E⃗ðx; y; fÞ

¼ −i
e2i½ðx2þy2Þ=ω0ωf �

πω0ωf

ZZþ∞

−∞

E⃗ðp; s;fÞe−2i½ðxpþysÞ=ω0ωf �dpds;

ð13Þ

where the focused spot waist radius ωf ¼ λf=πω0 ≃
2.5 μm is the fiber Gaussian mode size and lf ¼ k0ω2

f=2
its corresponding Rayleigh range, in our case 21.7 μm. It is
useful to note that lfðω0=ωfÞ ¼ f. We calculate the
resulting field spatial distribution in the focal plane:

E⃗ðx; y; fÞ ¼
�
−iþ z

l

�
eik0ze

i2ðx
2þy2Þ

ω0ωf e
− ðx2þy2Þ

ω2
f
ð1þiz=lÞ

×
ω0

ωf

�
¯̄M0 þ

x
f

¯̄MGH þ y
f

¯̄MIF

�
E⃗0: ð14Þ

The last matrix term gives the cross-polarized field com-
ponent which is an antisymmetric function of y with two
lobes with opposite phase and maxima located at y ¼
�ωf=

ffiffiffi
2

p
above and below the plane of incidence. The

essential finding from our work is that the confocal
arrangement transforms the collimated beam waist ω0

and Rayleigh length lþ iz of the Aiello and Woerdman
[43] field distribution at the mirror plane, into ωf and if in
our case. Aiello and Woerdman [43] show that it is the
finite size of the beam at the reflecting surface that is
responsible for the additional field terms that affect the
initial Gaussian mode. This result amounts to a sizable
amplification of the weak mode intensity in proportion to
ω0=ωf. From our work, it is becoming now clear here that a
confocal arrangement provides a valuable advantage to
explore experimentally the cross-polarization geometry
with sufficient sensitivity and a very fine spatial resolution.
In particular, high-extinction cross-polarization extinction
is kin to the “weak measurement procedure” of Aharonov
et al. [45,46], which we extend here to a confocal arrange-
ment enabling the added benefit of spatial resolution.
Recent literature [36] provides an interpretation for the
depolarization as resulting from an effective spin-orbit
interaction of light occurring at the mirror surface mani-
festing itself in the form of a spin-Hall effect of light [47].
In this work, we restrict ourselves to a purely modal
interpretation and leave the discussion concerning spin
orbit aside.

V. EFFECT OF CONFOCAL
SPATIAL FILTERING

The one final point we need to address to get a full
quantitative interpretation of our experiment is to address
the effect of the confocal filter function of the collecting
fiber. The single-mode fiber collects and ports the field to
the photodetector; it does this collection, however, by
acting as a Gaussian spatial filter. For our symmetric setup
shown in Fig. 1, we illuminate and collect light with a
single-mode fiber of identical mode size and with identical
collimating and focusing lenses. The spatial filtering is a
convolution between the field at the focal plane and the
fiber Gaussian mode amounting to an integrated field
πω2

fE⃗D at location x0, y0 of the fiber with respect to the
optical axis. The power measured at the other end of the
fiber is πω2

fϵ0cE⃗DE⃗
þ
D. The results of the calculation for

the field are the following. First, we get the mapping of the
reference field without the use of the polarizers and the
reflecting surface as measured by the detector:

E⃗D0;0 ¼
�
−iþ z

l

�
ω0

ωf
E0eik0z exp−γ

x20 þ y20
2ω2

f

�
cos β

sin β

�
;

ð15Þ

where γ ¼ ð1þ 2η2Þ=ð1þ iηÞ and η ¼ ωf=ω0 þ z=2l. We
note that the beam waist at focus appears now to be
broadened by a factor of

ffiffiffi
2

p
when comparing with the

distribution of Eq. (13). Second, we find that the confocal
filtering by convolution with a Gaussian mode leads to a
modified effective Jones matrix for the reflecting surface
acting on the field as seen from the detector:

¯̄MDx0;y0 ¼
�
rp 0

0 rs

�
þ x0
2ζ

�
r0p 0

0 r0s

�
þ y0
2ζ

rp þ rs
tanθi

�
0 −1
1 0

�
;

ð16Þ

where ζ ¼ fð1 − iηÞ is a complex-valued length that we
use as a fitting parameter when comparing our experimen-
tal data. With the confocal filtering, the Goos-Hänchen and
the Imbert-Fedorov field terms (i.e., the second and third
terms of the rhs in the equation) are halved when compared
to Eq. (14). The Jones matrix related to the polarizers and
polarization leakage remains unchanged. With this last
correction, we have now all the equations required in order
to simulate the modal transformation induced by a reflect-
ing surface acting on a polarized Gaussian beam and for
any arbitrary polarization and polarization leakage level.
Finally, the full scanning confocal mapping of the detected
field is given by the analytical form

E⃗Dðx0; y0Þ ¼ ¯̄AðαÞ ¯̄MDx0;y0
¯̄PðβÞE⃗D0;0: ð17Þ
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The first important result we are getting from Eq. (17) and
the mirror matrix term in Eq. (16) is when the location of
the fiber center and the focal spot axis coincide, namely, for
x0 ¼ 0 and y0 ¼ 0. In this case, the result is the same as
found in the simplified plane wave analysis in Sec. III, and
the equation of polarization cancellation given in Eq. (6)
holds fortuitously. This result is the case because the
filtering function of the confocal arrangement eliminates
the higher depolarizing modes. Without the confocal
filtering, the normalized integrated total intensity in
cross-polarization detected in wide field imaging of the
focused point, or collected with a wide core multimode
fiber, is estimated by summing the measured light inten-
sity collected in the cross-polarization mode such as
shown in Fig. 2 and normalizing to the integrated intensity
in the copolarized configuration. This estimation gives
for our silver mirror a best extinction possible in the
range of 106, namely, for the best case for which we are
using the polarization leakage compensation approach
described earlier.
This result demonstrates the key role of the confocal

arrangement for the giant polarization extinction reached in
the state of the art resonance fluorescence measurements
[17,18,24,31].
The second significant result is illustrated, applying

Eq. (17) on a purely p- or s-polarized beam measured in
cross-polarization, by mapping the focused spot position
ðx0; y0Þ across the single-mode fiber end. The result is an
intensity map displaying two lobe maxima located at the
fiber location at x0max ¼ 0 and y0max ¼ �ωf above and
below the plane of incidence. This result is in qualitative
agreement with our measurements as seen in Fig. 2 for
silver. We confirm these findings for Bragg mirrors and
thin-film-based beam-splitter cubes. The third significant
result is depicted in Figs. 3(d) and 4(d), showing the
evolution near cross-polarization of the position of the
reflected maxima of intensity as well as the location of
the intensity node as a function of the analyzer angle. Here,
the best fit to the data obtained with Eq. (17) imposes a
purely imaginary value to ζ about i600 μm. Failure to use
an imaginary value for ζ leads to a radically different
calculated dependency of the intensity extrema near cross-
polarization for Figs. 3(d) and 4(d). The predicted evolution
would be instead the one seen in Fig. 5(d) for a dielectric
illuminated from the air side. This result came as a
complete surprise to us, and we have no explanation for
why we need to use a purely imaginary ζ to fit all our data.
The other surprise, aside from the imaginary value aspect,
is that the absolute value of ζ is about 40 times shorter than
the focal length f that would be normally close to the
theoretical value of ζ to be normally used to interpret our
experiment. We conduct a similar measurement on a BK7
glass surface illuminated from air. The measured and fit
data are shown in Fig. 5(d). Here as well, the value of ζ to
get the best fit requires a purely imaginary value consistent

with the value used for Figs. 3(d) and 4(d). Numerous other
measurements performed in the circular polarization basis
as well as in a linear polarization basis 45° tilted from p and
s confirm the necessity to use an imaginary value for the
length parameter ζ, showing that our understanding is still
incomplete. We believe that we are still missing a full
quantitative understanding in the way the receiving fiber
filters non-Gaussian modes. The use of an imaginary value
of ζ maps closely the evolution of the mode transformation
near the cross-polarization condition for both normal and
total internal reflection. In our experiment, the material
parameter of the high-reflectivity surface that governs most
of the effects we observe is the phase difference φp − φs. In
particular, for high-reflectivity materials and total internal
reflection, the intensity of the lobe maxima at cross-
polarization is obtained from Eq. (16) at fiber location
ðx0; y0Þ ¼ ð0;�ωfÞ:

jE⃗Dð0;�ωfÞ=E⃗D0;0j2 ¼
1

4e

jrp þ rsj2
tan2θi

�
ωf

ζ

�
2

: ð18Þ

In particular, for high-reflectivity materials, from Eq. (11),
we have jrp þ rsj2=4 ¼ cos2Δ. In our experiment, we
determine earlier that for the protected silver surface
Δ ¼ 100°, so using the value of 600 μm we fit for the
absolute value of ζ, and the lobe intensity should be
about 2 × 10−7, which is in the range of our measured
values. We measure typical lobe maxima in the range of
0.3–1.4 × 10−6. For a direct comparison, we test our
model with a purely dielectric BK7 glass surface with
reflectivity from the air side near cross-polarization for the
p polarization. The results are shown in Fig. 5. In this

FIG. 5. Measured (a) and simulated (b) evolution of the modal
mapping through maximum extinction for reflectivity from the air
side off a glass surface (BK7) for p polarization. (c) Red symbols:
extinction ratio for different analyzer angle α shifts as explained
in the text. Black symbols: reference measurement with the
analyzer placed just after the polarizers. The positions of the
intensity extrema are shown in units of beam waist ωf at focus.
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configuration, as expected from the model discussed in
Sec. III, indeed there is no shift α − α0 between the
condition of maximum cross-polarization for the dielectric
and the reference measurement. As expected also from
Sec. III, there is no effect of cancellation of the polarization
leakage. The most remarkable difference is the way the
mode splitting evolves upon rotation of the analyzer. The
absence of imaginary terms in rp and rs is the reason for
this behavior. Here, we see not only the Imbert-Fedorov
out-of-plane splitting at cross-polarization but also the
appearance of the Goos-Hänchen mode showing a mixing
that bends the beam shape along the plane of incidence.
Figure 5 shows, in particular, the evolution of the beam
splitting near the cross-polarization condition which is
completely different from what is seen for metals such
as in Figs. 3(d) and 4(d). Because Imðrsr�pÞ ¼ 0 for the
reflectivity from the air side of a dielectric, there is no term
linear in δα near cross-polarization conditions as also seen
from the experiments. For a dielectric, an analytical
solution for the location of the lobe intensity maxima for
very small analyzer rotation angle δα ≪ 1 near the cross-
polarization condition shows the quadratic evolution
observed in our measurement.
As a final note, we believe that we are still missing a full

quantitative understanding in the way the receiving fiber
filters non-Gaussian modes. Indeed, the sensitivity of our
setup should have permitted us to detect the higher-term
modes TEM11 that have a symmetry xy. Such modes
originate from the finite-sized waist of the Gaussian beam,
making it naturally divergent [48]. In fact, we can use the
exact formalism developed above to show that such terms
originate also from geometrical projections around the
optical axis. This time, the projection is not involving
any reflecting surface but just the natural divergence of the
beam before the lens, leading to a gradual phase shift
gained by each plane-wave component, here again depola-
rizing naturally the beam. Keeping in mind the convolution
imposed by the collecting fiber, we calculate that the
expected clove-shaped mode is peaking at the four loca-
tions ðx0; y0Þ ¼ ð�ωf;�ωfÞ with an intensity given by

jE⃗Dð�ωf;�ωfÞ=E⃗D0;0j2 ¼
1

4e2

�
ωf

2lf

�
4

; ð19Þ

a result corroborated in Ref. [48] and in Ref. [39]. Using
this expression for our experiment parameters, the mode
peak intensity should be 3.8 × 10−7, a value that is well
within our sensitivity range. It is a puzzling fact that we do
not observe any trace of this TEM11 signal. There is no
doubt, however, that this mode is present as measured in
Ref. [48]; this difference is why we believe that our
understanding of the way the optical fiber is filtering the
signal is not complete yet.

VI. CONCLUSIONS

In conclusion, we have exposed a systematic experi-
mental method based on a confocal microscopy arrange-
ment to obtain a giant enhancement in dark-field cross-
polarization extinction and by up to 3 orders of magnitude
and possibly beyond. We found that the effect exploits the
material properties of a surface or interface under a
condition of total internal reflectivity, in particular. Our
work provides a good starting point for further research
aiming to optimize the performance of the microscope
optics in terms of polarization extinction. According to our
work, future research should focus on the phase character-
istics of reflecting surfaces (such as beam-splitter cubes and
mirrors) to cancel depolarization effects instead of merely
developing strategies to make very sophisticated, incon-
venient, and extremely expensive microscope objectives.
Our approach is simple, and the high polarization rejection
can be achieved for a targeted wavelength excitation and is
based only on polarization properties of light. This basis
means it has the potential to open up a broad spectrum of
innovative opportunities for applications and new forms of
interdisciplinary research including biology [49], plas-
monics [50], and optoelectronics [51], where resonant
confocal microscopy starts to play an important role.
Future developments in quantum optics based on novel

nanostructures demand an enhanced quantum coherence,
for instance, quantum entanglement between electronic
spin state and photons which can be achieved only using
resonant laser spectroscopy. Thus, an extreme cross-polari-
zation extinction coefficient ð>108Þ is very much the key to
guarantee the optical spin coherence property of single
photons. The technique presented here addresses promising
quantum optical systems currently explored in a large
variety of materials for which Stokes-shifted readout of
a coherent few-level system is not possible or inconven-
iently weak. This was the reason why semiconductor
quantum dot research profited very much from this tech-
nique and was immediately adapted to single-molecule
coherent spectroscopy [52]. In the future, resonance fluo-
rescence could favor the use of fluorophores that have weak
intersystem crossing rates. Such molecules are attractive for
their much increased photostability but at the cost of a
much reduced Stokes shift. Wide-band-gap materials are
interesting not only for their deep-level impurities but also
for their quantum confinement such as in GaN and similar
systems. Here, there is no Stokes shift to allow for the
readout of the fundamental level of the system. The same
goes also for quantum confined layered system such as
WSe2 as also recently studied by resonance fluorescence by
cross-polarization confocal microscopy [12].
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